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Abstract. This work explores the properties of some smart materials like piezoelectric
materials or shape memory alloys for use in intelligent structures. The use of these materials
has growing very fast in recent years, and today they occupy an important position in some
high-technological applications, as spatial devices and biomechanics. The remarkable
properties of these materials motivate their application in many situations, which may include
among others, structural vibration control and control of deflection in structures. In this
study it is presented a simple displacement-based finite element model of a composite beam
with an embedded or bonded smart actuator and its behavior is studied considering the use of
the actuator to control the beam actively or passively. The Bernoulli-Euler hypothesis is used,
and the actuator can be used as a lamina or a wire. The possibilities explored are the use of
the actuator for deflection control or vibration control, by changing its residual strain. An
interesting aspect of the model is that the basic principles presented here can be easily
extended to other structural elements, as plates, shells or Timoshenko beams.

Key words: Smart materials, Intelligent structures, Vibration control

1. INTRODUCTION

The use of intelligent structures has increased very fast in the latest years. Although in
present days there are a lot of structures and devices using these principles, the field of
applications still offering many possibilities to be explored.

In recent years, some investigations have been concerned to research the aspects of
composite structures with intelligent materials like Shape Memory Alloys and piezoelectrics
bonded or embedded within. Rogers (Rogers et al., 1991) and Brinson (Brinson et al., 1996)
have used models for plates and beams using SMA actuators respectively. Suleman and
Venkaya (1995) and Park and Chopra (1996) have made similar models using piezoelectric
actuators.

This work presents a very simple model for a bending beam with an actuator made of
smart material (SMA or piezoelectric) using the Finite Element Model, and applying the
Bernoulli-Euler hypothesis. The model can also be used in composites using elastic pre-
strained alloys or materials.



The basis of this work is the ability of some materials to recover or develop residual
strains when submitted to some external energy influence, as an electric field - case of
piezoelectrics - or thermal loads - shape memory alloys. The shape memory alloys also have
the ability to alter their elastic modulus when submitted to thermal variations (Scheckty and
Wu, 1991).

More specific cases of deflection control and vibration control can be found in Saravanos
and Heyliger (1995) and Savi (Savi et al, 1998). Drozdov and Kalamkarov (1996) made a
general analytical study of residual strain and material property optimization.

This work is divided in 4 sections. In section 2 the model is presented and developed for
general application. Section 3 is divided in two subsections, one referent to deflection control
and other dealing with dynamical control. In section 4 the results are commented and some
conclusions about the use of intelligent actuators in composite structures are presented.

2. MODELING

2.1 General considerations

This model assumes that the beam behaves as a Bernoulli-Euler beam in bending and can
be made of various different laminae. The assumed displacement field for the structure is given
by:
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where u is the longitudinal displacement of the midplane of the beam. Therefore, the
longitudinal beam strain is given by:
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The stress σxx is related to the strain εxx by Hooke’s law, σl are the stresses developed on
the laminae and σa is the stress developed on the actuator. When the residual strain εa is
activated, the stress developed on the actuator is given by Eq. (3b).

σ εl lE= stress on the laminae (3a)
σ ε εa a aE= +( ) stress on the actuator (3b)

The stress developed on the actuator can be divided into two different stresses: the elastic
stress σe and the induced-strain stress σis, as shown in Eq. (4)

aaaisea EE εεσσσ +=+= (4)

In Eq. (4) Ea is the Young modulus of the actuator. The layers are distributed on the beam
as shown in Fig. 1:
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Figure 1 - Squematic view of the numbering system of the laminate

As it can be observed in Fig. 1, the beam can be constituted by N different laminae, which
are numbered in sequence.

2.2 Composite beams

The longitudinal force N applied in the beam is expressed in terms of stresses as:
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In Eq. (5), A, Am and Aa are the sectional areas of the beam, of the matrix and the actuator
respectively. As the stress on the actuator is separated in elastic stress and induced strain
stress, the elastic stress was included on the first integral of the right part of Eq. (5), and the
second integral of the right part of Eq. (5) deals with the induced-strain stress. Equation (5)
can be expanded to include stresses developed in each laminate of the beam, as shown in Eq.
(6)
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In Eq. (6), the integral of stress in the area of the lamina was performed for each kth
lamina, and when the laminate include or is an actuator, the second integral of Eq. (6)
computes the longitudinal force developed by the actuator, when it is activated. If the laminate
has no actuator, the induced-strain, and consequently the eventually induced stress is equal to
zero. Performing the complete integration of Eq. (6), and considering Eqs. (1) through (4), one
obtains the following equation for the longitudinal force in the beam (for simplicity, κxx =
∂2w/∂x2):

N A B E Axx a a a= + +11 0 11ε κ ε (7)



The expression containing εa in Eq. (7) is obtained considering that the Young modulus of
the actuators are all equal and the actuators develop the same induced-strain. Aa is the
transverse area of the actuator(s) and A11 and B11 are the extensional stiffness and the coupling
stiffness as defined in the Eqs. (8) :
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In Eqs. (8), b is the width of the beam, k is the number of the lamina, Ek is the Young
modulus of the kth lamina, and Ak and Hk are the area and the static moment of the kth lamina
respectively. The moment of a beam in function of the stresses developed in the beam is given
by:

M zdA zdA zdA zdAe
A

si
A

k
Ak

N

si
Aa k a

= + = +∫ ∫ ∫∑ ∫
=

σ σ σ σ
1

(9)

Performing similar calculus as it was made in the case of longitudinal force, the following
equation is obtained for the moment in the beam:

aaaxx HEDBM εκε ++= 11011 (10)

In Eq. (10) Ha is the static moment of the actuator and D11 is the bending stiffness, as
defined in Eq. (11).
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In Eq. (11) Ik is the moment of inertia of the kth lamina. Based on equation (7), it is
possible to write an expression for the longitudinal strain in the midplane ε0:
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Substituting (12) in (10) one obtains:
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The governing equation of equilibrium for composite laminates beams using Bernoulli-
Euler hypothesis is given by:
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In Eq. (14) I0, I1 and I2 are the rotary inertia terms and they are defined by the following
general equation:
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In Eq. (15) ρk is the mass density of the kth lamina. Thus, substituting Eqs. (12) and (13)
in (14), and re-arranging some terms, a general equilibrium equation for the composite
laminated beam is obtained:
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It should be noted that if the beam is symmetric, all the terms involving Ha, I1 and B11

vanishes.

2.3 Finite Element Model

Several approaches have been developed to use finite element in composite laminates, as
can be found in Saravanos and Heyliger (1995), Baz and Chen (1995), Brinson and Lammering
(1993) and Suleman and Venkaya (1995). Here it will be presented one of the simplest
approaches, which is considerably efficient for the purpose of this work. Using a weight
function v(x) in Eq. (16) and integrating it between 0 and L, we obtain the following equation:
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Some boundary conditions relationed to the displacements are produced together Eq.

(17), but they are dispensable for the scope of this work. Now, Considering ( ) ( )v x xj
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 and doing some algebraic operations, it is possible build the

elementar system of the problem, as showed in Eq. (18):
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Equation (20) in vetorial form is given by:
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Equation (21) is the elementar load vector representing the load developed in the beam
when the residual strain εa is activated.

3. RESULTS

3.1 Deflection Control

To use the beam to control its deflection when submitted to static loads, the following
global equation is used:

[ ]{ } { } { }K w F F= − ′ (22)

In Eq. (22) it can be seen that the difference between the usual global system for static
loads and the model used in this work is the induced-strain load vector {F’}. When there is no
induced-strain in the actuator, the load vector vanishes.

A squematic lateral view of the beam utilized to perform the results concerned to
deflection control is showed in Fig 2. The beam has the following dimensions: 1000 mm length
(L), 40 mm high (h) - 2mm of actuator (ha) and 38 mm matrix - and 20 mm width (b).
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Figure 2- Squematic lateral view of the beam utilized on the numerical modeling

Figure 3 shows the three kinds of external loads utilized to perform the results and the
relative position of the actuator on the beam.
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Figure 3 - (a) cantilevered beam; (b) simply supported; and (c) clamped-clamped beam

The material properties of the beam (actuator and matrix) are showed in Table 1, and in
Table 2 it is showed the maximum (in module) transverse deflections of the beam with
inactivated actuator comparing with activated-actuator deflections.

Table 1. Elastic modulus and mass density of the actuator and the matrix

actuator matrix
Elastic Modulus (GPa) 65,12 3,00
Mass density (Kg.103/m3) 5,00 1,00

Table 2. Maximums deflections of the beam with the actuator activated and inactivated

εa = -0,002976 cantilevered beam simply supported beam Clamped Beam
actuator inact. Activated inact. activated inact. activated

Number of Elements 1 1 2 2 2 2
Numerical Results (mm) -87,53 40,02 -5,47 6,40 -1,37 -1,37
Analytical Results (mm) -87,53 40,02 -5,47 6,40 -1,37 -1,37

From Table 2, it can be observed that the cantilevered beam and the simply supported
beam changed their transverse deflections, which became positives. In the cantilevered beam,
the actuator was located on the upper surface of the beam (as shown in Fig. 1), and in the
simply supported beam, the actuator was located in the lower surface. It was made because the
induced stresses developed in the actuator were negative, which produced compressive
induced stresses. In fact, it can be observed that the sign of the moment can be associated with



the type of stress or strain developed on each surface of an elastic beam. Figure 4 shows the
bending diagrams of the beam:
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Figure 4 - Bending Diagrams of (a) Cantilevered beam; (b) simply supported beam and (c)

clamped beam

As established here, the negative sign of the bending moment means that the stress on
the superior surface is tensile stress, and a positive sign design compressive stress. In view of
this, it is very important locate the actuator in the surface according the kind of stress
developed on that surface. If the residual strain of the actuator is obtained through tensile
stress, the actuator must be putted on the surface with tensile stress.

In the case of a cantilevered beam, the upper layer of the beam is submitted to a tensile
stress, therefore the actuator with tensile strain must be placed in its upper layer. We can see
that the clamped-clamped beam has diagram with both positive and negative signs, and if the
moment is integrated across the length of the beam, it is possible to see that this integration is
equal to zero. Therefore the transverse deflection of the beam did not changed in activating the
actuator.

Following the ideas descripted above, its possible to predict where is the better place to
locate the actuator analyzing the sign of the curvature, or the bending moment diagram.

3.2 Dynamical Control

The induced-strain can be also used for vibration control. As it can be seem in Eq. (14),
the normal force across the beam acts on the dynamic response of the beam. Therefore, the
induced-strain developed on the actuator can be used to generate a normal force across the
beam, controlling the dynamical response of the beam.

In view of this, a basic study can be made exploring the free response of the beam, i.e., the
control of natural frequencies of the beam. The elementar equation to study these properties is
given by Eq. (23).
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where We are the nodal values of the dynamical displacement (Reddy, 1997), and the
displacement in the z axis (w) is considered periodic in time, i.e., ω ω
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force N is given by Eq. (7), and in the absence of external loads, it can be written as
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To perform the dynamical control of the beam, the following simply supported beam (Fig.
5) configuration was considered:
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Figure 5 - Configuration used to perform dynamical results

In Table 3 it is showed the results obtained through the use of the actuator as a generator
of normal force across the beam. The induced-strain used is of 0.3%, positive and negative,
which is a reasonable value for many materials. The numerical results are compared with the
theoretical ones, to illustrate the effectiveness of the model.

Table 3. Natural (fundamental) frequencies of the beam

Natural Frequency (Hz)
N. of elements Inactivated (εa = 0) Activated (εa = 0.003) Activated (εa = -0.003)
2 359.381 457.586 221.187
4 358.061 456.518 219.105
10 357.971 456.447 218.958
Analytical 357.968 456.445 218.954

In Table 3 the results obtained using positive strains - and positive or tensile longitudinal
force N - show an increase of the natural frequencies. These results are in agreement with the
ones obtained in the current literature (Reddy, 1997). By other side, when N is negative or
compressive, the natural frequencies decrease.

Another possible kind of dynamical control using smart actuators is the alteration of their
mechanical properties, like the Young modulus. This is specifically true for Shape Memory
Alloys, which have the ability to change their Elastic modulus depending on their crystalline
structure (Savi et al, 1998). Some nickel-titanium alloys can increase their elastic modulus
about three to four times greater when transforms from austenitic to martensitic phase.

4. CONCLUSIONS

This work presented and performed a finite element model of a beam using an actuator
with a residual strain εa that can be activated to generate axial stresses in the actuator and
consequently act on the beam to control its deflection or vibration. The obtained results
presented a very satisfactory agreement with respect to the analytical results.

Some considerations can be deduced from this work, which the most important are: the
finite element formulation is quite simple, and for example, to deflection control it consists
basically in a insertion of a load vector, very similarly as it is usually made when thermal loads
are considered (Reddy, 1997); the position of the actuator in the beam is very important, and
must be analyzed before its application, considering the kind of stresses that will be developed
on the beam; the model is easily applicable in dynamical control, exploring the induced-strain
to generate an axial load and  control the dynamical response of the beam.

Finally, all the aspects commented above can be extended to more complex structural
elements, as Timoshenko beams, plates and shells.
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